

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road – 517583 <u>OUESTION BANK (DESCRIPTIVE)</u>

Subject with Code: Computer Graphics(20MC9110) Regulation: R20

Course & Branch: MCA Year & Sem: I-MCA & II-Sem

UNIT –I

INTRODUCTION AND OUTPUT PRIMITIVES

1	a)	Describe Computer Graphics.	[L2][CO2]	[3 M]
	b)	Identify various applications of Computer Graphics.	[L2][CO2]	[9M]
2	a)	List out various video display devices?	[L1][CO2]	[4 M]
	b)	Explain Raster and Random Scan Displays.	[L2][CO2]	[8M]
3	a)	Explain Raster scan system with its architecture.	[L2][CO2]	[8M]
	b)	Illustrate various input devices using in graphics workstation.	[L3][CO2]	[4M]
4	-	press the steps for drawing a Line by using Analyser Algorithm. Find the ermediate coordinates between the points $(0,0)$ to $(7,7)$.	[L2][CO2]	[12M]
5	a)	Construct the steps for Line DDA Algorithm.	[L6][CO2]	[8M]
	b)	Calculate DDA Line Co-ordinates between the points (2,3) & (8,9).	[L4][CO2]	[4M]
6	a)	Construct the steps for Bresenham's Line Algorithm.	[L6][CO2]	[8M]
	b)	Calculate Bresenham's Line Co-ordinates for the points (20,10) & (30,18).	[L4][CO2]	[4 M]
7	Cho	pose the steps for generating Mid-point Circle Algorithm with example.	[L5][CO2]	[12M]
8	Cho	pose the steps for generating Mid-point Ellipse Algorithm with example.	[L5][CO2]	[12M]
9	a)	Explain in detail about boundary fill algorithm.	[L2][CO2]	[6M]
	b)	Discuss about flood fill algorithm with function.	[L2][CO2]	[6M]
10	a)	What are the approaches to fill the area of primitives?	[L1][CO2]	[4 M]
	b)	Discuss about scan line polygon fill algorithm.	[L2][CO2]	[6M]

UNIT –II 2D AND 3D GEOMETRICAL TRANSFORMS

1	a)	List out various 2D Geometric Transformations.	[L1][CO4]	[6M]
	b)	Demonstrate Translation in 2D with an example.	[L2][CO4]	[6M]
2	a)	Explain 2D Rotation with an example.	[L2][CO4]	[6M]
	b)	Demonstrate Scaling in 2D with an example.	[L2][CO4]	[6M]
3	Det	termine various kinds of 2D composite transforms in detailed with example.	[L3][CO4]	[12M]
4	a)	Demonstrate 2D Reflection with an example.	[L2][CO4]	[6M]
	b)	Demonstrate the Shearing 2D Transformation with an example.	[L2][CO4]	[6M]
5	a)	Differentiate 2D & 3D with various transformations.	[L4][CO4]	[4M]
	b)	Show matrix representation for various 2D transformations.	[L1][CO4]	[8M]
6	Ide	ntify various kinds of 3D basic transformations with examples.	[L3][CO4]	[12M]
7	a)	Demonstrate Translation in 3D with an example.	[L2][CO4]	[6M]
	b)	Explain 3D Rotation with an example.	[L2][CO4]	[6M]
8	a)	Demonstrate Scaling in 3D with an example.	[L2][CO4]	[6M]
	b)	List out various 3D Geometric Transformations.	[L1][CO4]	[6M]
9	a)	Demonstrate reflection transformation in 3D with an example.	[L2][CO4]	[6M]
	b)	Demonstrate shearing transformation in 3D with an example.	[L2][CO4]	[6M]
10	Lis	t out and explain various kinds of 3D composite transformations with example.	[L2][CO4]	[12M]

UNIT –III 2D & 3D VIEWING

1	a)	What do you mean by 2D Pipeline viewing?	[L1][CO3]	[4M]
	b)	Explain the transformation from window to viewport.	[L2][CO3]	[8M]
2		monstrate steps for window to viewport coordinate transformation with mple.	[L2][CO3]	[12M]
3		Define Clipping. Explain types of Clipping.	[L2][CO3]	[6M]
	b)	Illustrate point clipping with an example.	[L3][CO3]	[6M]
4		alyze the steps to clip a line by using Cohen-Sutherland algorithm with an mple.	[L3][CO3]	[12M]
5	a)	Discuss about line clipping.	[L2][CO3]	[5M]
	b)	Identify the steps for clipping a line by using Liang Barsky.	[L2][CO3]	[7M]
6	a)	Discuss about polygon clipping.	[L2][CO3]	[5M]
	b)	Demonstrate Sutherland-Hodgeman Polygon Clipping.	[L2][CO3]	[7M]
7	a)	Illustrate the steps involved in 3D Viewing Pipeline with a diagram.	[L3][CO3]	[6M]
	b)	Discuss viewing coordinate and explain window to viewing coordinate transformation.	[L2][CO3]	[6M]
8	Exp	plain in detail about polygon surface with an example.	[L2][CO3]	[12M]
9	a)	Define Curves. Explain types of Curves.	[L2][CO3]	[5M]
	b)	Identify the properties of Bezier Curves.	[L3][CO3]	[7M]
10	Dise	cuss in detail about Bezier Curves.	[L2][CO3]	[12M]

UNIT –IV

VISIBLE SURFACE DETECTION METHODS & ILLUMINATION MODELS AND SURFACE RENDERING METHODS

1	a)	What do you mean by Visible Surface Detection?	[L1][CO5]	[4M]
	b)	Explain classification of VSD Algorithms	[L2][CO5]	[8M]
2	a)	Build the steps to detect object Back-Face.	[L3][CO5]	[6M]
	b)	Build the steps for Depth-Buffer Method.	[L3][CO5]	[6M]
3	a)	Describe Depth-Sort Method when the objects are overlapped.	[L1][CO5]	[6M]
	b)	Illustrate Scan line Method with an algorithm.	[L3][CO5]	[6M]
4	a)	Illustrate Area subdivision Method with an algorithm.	[L3][CO5]	[6M]
	b)	Discuss about object space and image space methods.	[L2][CO5]	[6M]
5	a)	Illustrate Z-Buffer Method with an algorithm.	[L3][CO5]	[6M]
	b)	Analyze the steps involved in Binary Space Partitioning.	[L4][CO5]	[6M]
6	Det	ermine the visible surface by using scan-line method. With example.	[L3][CO5]	[12M]
7	Cla	ssify and explain various illumination models.	[L4][CO5]	[12M]
8	-	plain the following in details	[L2][CO5]	[12M]
9	i) A a)	Imbient Lightii) Diffuse Reflectioniii) Specular ReflectionDiscuss the factors on which lightning effect depends.	[L2][CO5]	[6M]
-	b)	Illustrate Halftone Pattern briefly.	[L3][CO5]	[6M]
10		and explain in detail about light sources for an object.	[L2][CO5]	[12M]

1	a) Discuss about color models.	[L2][CO6]	[6M]
	b) Explain various properties of Light.	[L2][CO6]	[6M]
2	Choose and Explain various Standard Primaries Color Model.	[L5][CO6]	[12M]
3	a) Write short notes on XYZ Color Model.	[L1][CO6]	[4M]
	b) Explain RGB Color Model in detail.	[L2][CO6]	[8M]
4	a) Explain in detail about CMY Color Model.	[L2][CO6]	[6M]
	b) Explain in detail about HSV Color Model.	[L2][CO6]	[6M]
5	a) What are the various color applications?	[L1][CO6]	[6M]
	b) Write short notes on YIQ Color Model.	[L1][CO6]	[6M]
6	a) Explain in detail about Additive Color Model.	[L2][CO6]	[6M]
	b) Explain in detail about Subtractive Color Model.	[L2][CO6]	[6M]
7	Design the steps involved in Animation Sequence.	[L6][CO6]	[12M]
8	Explain various animation functions with example.		[12M]
9	a) Write short notes on Animation.	[L1][CO6]	[6M]
	b) Identify various application areas of Animation.	[L3][CO6]	[6M]
10	Describe various types of animations with their merits and demerits.	[L2][CO6]	[12M]

Prepared by: Mr. J. S. ANANDA KUMAR, Associate Professor, Department of MCA, SIETK.

